Carbon Nanotube Thermal Pastes for Improving Thermal Contacts
نویسنده
چکیده
The use of 0.6 vol.% single-walled carbon nanotubes in a poly(ethylene glycol)based dispersion gave a thermal paste that was as effective as solder for improving thermal contacts. A thermal contact conductance of 20 · 10 W m K was attained. An excessive amount of nanotubes (e.g. 1.8 vol.%) degraded the performance, because of conformability loss. The nanotubes were more effective than hexagonal boron nitride particles but were less effective than carbon black, which gave a thermal contact conductance of 30 · 10 W m K.
منابع مشابه
On the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method
In this paper, finite element method is used to obtain thermal conductivity coefficients of single-walled carbon nanotube reinforced polypropylene. For this purpose, the two-dimensional representative volume elements are modeled. The effect of different parameters such as nanotube dispersion pattern, nanotube volume percentage in polymer matrix, interphase thickness between nanotube and surroun...
متن کاملCarbon black dispersions and carbon–silver combinations as thermal pastes that surpass commercial silver and ceramic pastes in providing high thermal contact conductance
Carbon black dispersions are superior to the best commercial silver and ceramic particle thermal pastes for providing high thermal contact conductance across mating surfaces that are smooth (0.05 lm). For mating surfaces that are rough (15 lm), the combined use of carbon black and silver is more effective than carbon, silver or ceramic pastes. The use of a silver paste to even out the rough sur...
متن کاملAn Improvement in Thermal and Rheological Properties of Water-based Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT)
Designing drilling fluids for drilling in deep gas reservoirs and geothermal wells is a major challenge. Cooling drilling fluids and preparing stable mud with high thermal conductivity are of great concern. Drilling nanofluids, i.e. a low fraction of carbon nanotube (CNT) well dispersed in mud, may enhance the mixture thermal conductivity compared to the base fluids. Thus, they are potentially ...
متن کاملHigh-field transport and thermal reliability of sorted carbon nanotube network devices.
We examine the high-field operation, power dissipation, and thermal reliability of sorted carbon nanotube network (CNN) devices, with <1% to >99% semiconducting nanotubes. We combine systematic electrical measurements with infrared (IR) thermal imaging and detailed Monte Carlo simulations to study high-field transport up to CNN failure by unzipping-like breakdown. We find that metallic CNNs car...
متن کاملThermal conduction phenomena in carbon nanotubes and related nanostructured materials
The extremely high thermal conductivities of carbon nanotubes have motivated a wealth of research. Progress includes innovative conduction metrology based on microfabricated platforms and scanning thermal probes as well as simulations exploring phonon dispersion and scattering using both transport theory and molecular dynamics. This article highlights these advancements as part of a detailed re...
متن کامل